Fluence Map Optimization in IMRT Cancer Treatment Planning and A Geometric Approach
نویسندگان
چکیده
Intensity-modulated radiation therapy (IMRT) is a state-of-the-art technique for administering radiation to cancer patients. The goal of a treatment is to deliver a prescribed amount of radiation to the tumor, while limiting the amount absorbed by the surrounding healthy and critical organs. Planning an IMRT treatment requires determining fluence maps, each consisting of hundreds or more beamlet intensities. Since it is difficult or impossible to deliver a sufficient dose to a tumor without irradiating nearby critical organs, radiation oncologists have developed guidelines to allow tradeoffs by introducing so-called dose-volume constraints (DVCs), which specify a given percentage of volume for each critical organ that can be sacrificed if necessary. Such constraints, however, are of combinatorial nature and pose significant challenges to the fluence map optimization problem. The purpose of this paper is two-fold. We try to introduce the IMRT fluence map optimization problem to a broad optimization audience, with the hope of attracting more interests in this promising application area. We also propose a geometric approach to the fluence map optimization problem. Contrary to the traditional view, we treat dose distributions as primary independent variables and beamlet intensities as secondary. We present theoretical and preliminary computational results for the proposed approach, while omitting excessive technical details to maintain an expository nature of the paper.
منابع مشابه
Iterative Approach for Automatic Beam Angle Selection in Intensity Modulated Radiation Therapy Planning
Introduction: Beam-angle optimization (BAO) is a computationally intensive problem for a number of reasons. First, the search space of the solutions is huge, requiring enumeration of all possible beam orientation combinations. For example, when choosing 4 angles out of 36 candidate beam angles, C36 = 58905 possible combinations exist. Second, any change in a beam 4 config...
متن کاملA Geometric Approach to Fluence Map Optimization in IMRT Cancer Treatment Planning
Intensity-modulated radiation therapy (IMRT) is a state-of-the-art technique for administering radiation to cancer patients. The goal of a treatment is to deliver a prescribed amount of radiation to the tumor, while limiting the amount absorbed by the surrounding healthy and critical organs. Planning an IMRT treatment requires determining fluence maps, each consisting of hundreds or more beamle...
متن کاملFLUENCE MAP OPTIMIZATION IN INTENSITY MODULATED RADIATION THERAPY FOR FUZZY TARGET DOSE
Although many methods exist for intensity modulated radiotherapy (IMRT) fluence map optimization for crisp data, based on clinical practice, some of the involved parameters are fuzzy. In this paper, the best fluence maps for an IMRT procedure were identifed as a solution of an optimization problem with a quadratic objective function, where the prescribed target dose vector was fuzzy. First, a d...
متن کاملDose-volume-based IMRT fluence optimization: A fast least-squares approach with differentiability
In intensity-modulated radiation therapy (IMRT) for cancer treatment, the most commonly used metric for treatment prescriptions and evaluations is the so-called dose volume constraint (DVC). These DVCs induce much needed flexibility but also non-convexity into the fluence optimization problem, which is an important step in the IMRT treatment planning. Currently, the models of choice for fluence...
متن کامل3D Analysis of Intensity-Modulated Radiation Therapy Quality Assurance Measurement using a 2D Diode Array
Intensity-modulated radiation therapy (IMRT) quality assurance (QA) is often performed using a 2D device and compares measured and computed fluence maps to determine if a field passes or fails certain dose and position criteria. The effects of a measured deviation to the 3D patient spatial dosimetry and dose volume histogram (DVH) are largely unknown because they cannot be analyzed using commer...
متن کامل